If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-3.76=0
a = 1; b = 1; c = -3.76;
Δ = b2-4ac
Δ = 12-4·1·(-3.76)
Δ = 16.04
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{16.04}}{2*1}=\frac{-1-\sqrt{16.04}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{16.04}}{2*1}=\frac{-1+\sqrt{16.04}}{2} $
| 3/5x+10=7/5x-10 | | 1/2(5x-8)-4=10 | | 18=m+15 | | 3x+x+76=180 | | x=7*2/1/2 | | 6/7=9/x | | x=x^2-2x+3 | | 0=x^2-12x+26 | | 10=3/y | | 3=17+5x | | 2x^2+6x=82 | | 6(3-d)+2d=24-10d | | 5g+7=-52 | | (2y+5)(y-1)=2y^2 | | 2y^2+5y=7 | | 5|2-3x|=20-5x | | 3/5k-(k+1/3)=1/15(k+3) | | (5x÷9)-11=(-51) | | 8n-(6+5)=7 | | 3.1+w/4=-3.3 | | 12w-8(w-1)=4w-8 | | 1.5x+x=205 | | 5x/9=7x/6 | | (5x÷9)-11=-51 | | 1.25x+5=50 | | 11/3x-3/4=7/12 | | 6+2x+16=x+16 | | 5x=25/x | | 52=-13m | | 10x-7=2*(13-5x) | | 7(3x-9)=21x-99 | | x^2+x-6.0025=0 |